

AM/FM PLL Frequency Synthesizer

Overview

The LC72130 and LC72130M are PLL frequency synthesizers for use in tuners in radio cassette recorders and other products.

Applications

PLL frequency synthesizer

Functions

- High-speed programmable dividers
 - FMIN: 10 to 160 MHzpulse swallower

(built-in divide-by-two prescaler)

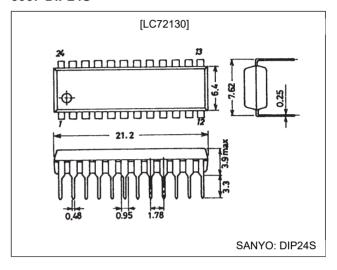
— AMIN: 2 to 40 MHzpulse swallower

0.5 to 10 MHzdirect division

• IF counter

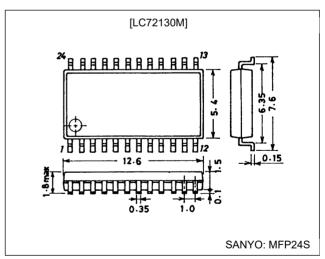
— IFIN: 0.4 to 12 MHzAM/FM IF counter

- Reference frequencies
 - Twelve selectable frequencies (4.5 or 7.2 MHz crystal)

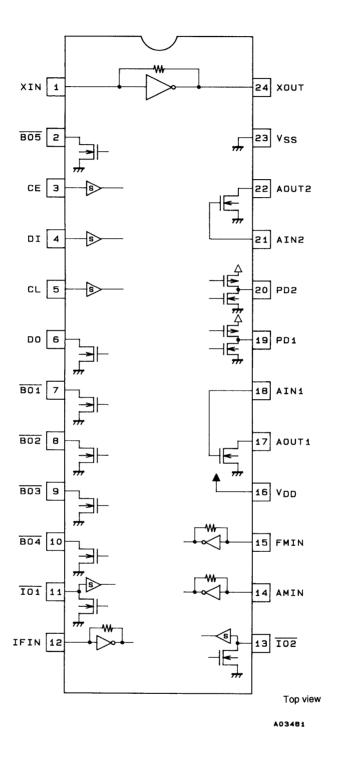

1, 3, 5, 9, 10, 3.125, 6.25, 12.5, 15, 25, 50 and 100 kHz

- Phase comparator
 - Dead zone control
 - Unlock detection
 - Deadlock clear circuit
- Built-in MOS transistor for implementing an active lowpass filter (two systems)
- · Inputs and outputs
 - Dedicated output ports: five pins
 - Input or output ports: two pins
 - Clock time base output available
- Serial data I/O
 - Supports CCB format communication with the system controller.
- · Operating ranges
 - Supply voltage......4.5 to 5.5 $\rm V$
 - Operating temperature.....40 to +85°C
- Packages
 - DIP24S, MFP24S
 - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

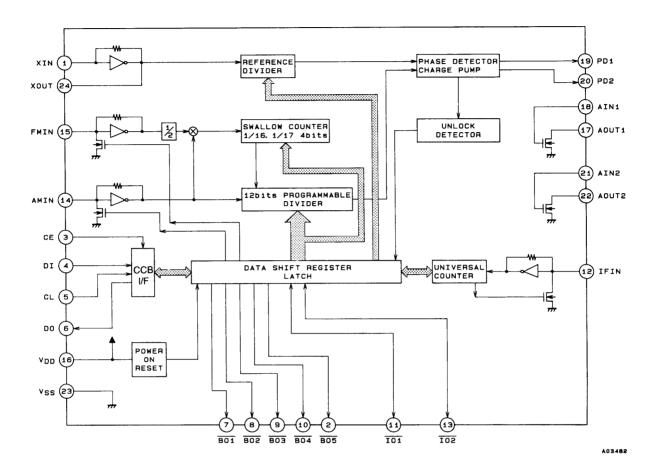
Package Dimensions


unit: mm

3067-DIP24S



unit: mm


3112-MFP24S

Pin Assignment

Block Diagram

Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parameter	Symbol	Pins	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
	V _{IN} 1 max	CE, CL, DI, AIN1, AIN2	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3 max	<u>101</u> , <u>102</u>	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +7.0	V
Maximum output voltage	V _O 2 max	XOUT, PD1, PD2	-0.3 to V _{DD} + 0.3	V
	V _O 3 max	BO1 to BO5, IO1, IO2, AOUT1, AOUT2	-0.3 to +15	V
	I _O 1 max	BO1	0 to 3.0	mA
Maximum output current	I _O 2 max	DO, AOUT1, AOUT2	0 to 6.0	mA
	I _O 3 max	BO2 to BO5, IO1, IO2	0 to 10.0	mA
Allowable power dissipation	Pd max	Ta ≤ 85°C	DIP24S: 350 MFP24S: 200	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		5.5	V
lanut high lavel veltage	V _{IH} 1	CE, CL, DI		0.7 V _{DD}		6.5	V
Input high level voltage	V _{IH} 2	ĪO1, ĪO2		0.7 V _{DD}		13	V
Input low level voltage	V _{IL}	CE, CL, DI, IO1, IO2		0		0.3 V _{DD}	V
	V _O 1	DO		0		6.5	V
Output voltage	V _O 2	BO1 to BO5, IO1, IO2, AOUT1, AOUT2		0		13	V
	f _{IN} 1	XIN	V _{IN} 1	1		8	MHz
	f _{IN} 2	FMIN	V _{IN} 2	10		160	MHz
Input frequency	f _{IN} 3	AMIN	V _{IN} 3, SNS = 1	2		40	MHz
	f _{IN} 4	AMIN	V _{IN} 4, SNS = 0	0.5		10	MHz
	f _{IN} 5	IFIN	V _{IN} 5	0.4		12	MHz
	V _{IN} 1	XIN	f _{IN} 1	400		1500	mVrms
	V _{IN} 2-1	FMIN	f = 10 to 130 MHz	40		1500	mVrms
	V _{IN} 2-2	FMIN	f = 130 to 160 MHz	70		1500	mVrms
Input amplitude	V _{IN} 3	AMIN	f _{IN} 3 , SNS = 1	40		1500	mVrms
	V _{IN} 4	AMIN	f _{IN} 4 , SNS = 0	40		1500	mVrms
	V _{IN} 5	IFIN	f _{IN} 5, IFS = 1	40		1500	mVrms
	V _{IN} 6	IFIN	f _{IN} 6, IFS = 0	70		1500	mVrms
Oscillation-guaranteed crystal resonator	Xtal	XIN, XOUT	*	4.0		8.0	MHz

Allowable Operating Ranges at $Ta = -40\ to\ +85^{\circ}C,\ V_{SS} = 0\ V$

Note: * Recommended crystal oscillator CI values:

 $CI \le 120\Omega$ (For a 4.5 MHz crystal)

 $\text{CI} \leq 70\Omega$ (For a 7.2 MHz crystal)

However, since the oscillator circuit characteristics depend on the printed circuit board and component values actually used, we recommend requesting a circuit evaluation from the manufacturer of the crystal used.

<Sample Ocsillator Circuit>

Crystal oscillator: HC-49/U (manufactured by Kinseki, Ltd.), CL = 12 pF

C1 = C2 = 15 pF

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items. Therefore we recommend consulting with the manufacturer of the crystal for evaluation and reliability.

LC72130/M

Electrical Characteristics at $Ta=-40\ to\ +85^{\circ}C,\ V_{SS}=0\ V$

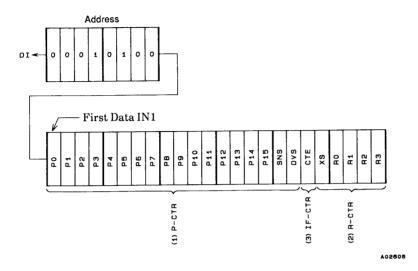
Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
	Rf1	XIN			1.0		ΜΩ
	Rf2	FMIN			500		kΩ
Built-in feedback resistance	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
D 76 : 11 1 : 1	Rpd1	FMIN			200		kΩ
Built-in pull-down resistor	Rpd2	AMIN			200		kΩ
Hysteresis	V _{HIS}	CE, CL, DI, IO1, IO2			0.1 V _{DD}		V
Output high level voltage	V _{OH} 1	PD1, PD2	IO = -1 mA	V _{DD} – 1.0			V
	V _{OL} 1	PD1, PD2	IO = 1 mA			1.0	V
			IO = 0.5 mA			0.5	V
	V _{OL} 2	BO1	IO = 1 mA			1.0	V
			IO = 1 mA			0.2	V
Output low level voltage	V _{OL} 3	DO	IO = 5 mA			1.0	V
			IO = 1 mA			0.2	V
	V _{OL} 4	BO2 to BO5, IO1, IO2	IO = 5 mA			1.0	V
			IO = 8 mA			1.6	V
	V _{OL} 5	AOUT1, AOUT2	IO = 1 mA, AIN = 1.3 V			0.5	V
	I _{IH} 1	CE, CL, DI	V _I = 6.5 V			5.0	V
	I _{IH} 2	ĪO1, ĪO2	V _I = 13 V			5.0	μA
	I _{IH} 3	XIN	V _I = V _{DD}	2.0		11	μA
Input high level current	I _{IH} 4	FMIN, AMIN	$V_I = V_{DD}$	4.0		22	μA
	I _{IH} 5	IFIN	V _I = V _{DD}	8.0		44	μA
	I _{IH} 6	AIN1, AIN2	V _I = 6.5 V			200	nA
	I _{IL} 1	CE, CL, DI	V _I = 0 V			5.0	μA
	I _{IL} 2	ĪO1, ĪO2	V _I = 0 V			5.0	μA
	I _{IL} 3	XIN	V _I = 0 V	2.0		11	μA
Input low level current	I _{IL} 4	FMIN, AMIN	V _I = 0 V	4.0		22	μA
	I _{IL} 5	IFIN	V _I = 0 V	8.0		44	μA
	I _{IL} 6	AIN1, AIN2	V _I = 0 V			200	nA
Output off leakage current	I _{OFF} 1	BO1 to BO5, AOUT1, AOUT2, IO1, IO2	V _O = 13 V			5.0	μA
Output on leakage current	I _{OFF} 2	DO	V _O = 6.5 V			5.0	μA
High level three-state off leakage current	I _{OFFH}	PD1, PD2,	$V_O = V_{DD}$		0.01	200	nA
Low level three-state off leakage current	I _{OFFL}	PD1, PD2	V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN			6		pF
	I _{DD} 1	V _{DD}	Xtal = 7.2 MHz, f _{IN} 2 = 130 MHz, V _{IN} 2-1= 40 mVrms		5	10	mA
Current drain	I _{DD} 2	V _{DD}	PLL block stopped (PLL INHIBIT), Xtal oscillator operating (Xtal = 7.2 MHz)		0.5		mA
	I _{DD} 3	V _{DD}	PLL block stopped Xtal oscillator stopped			10	μА

Pin Functions

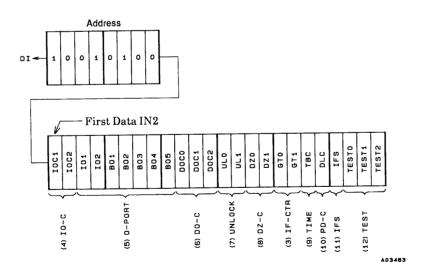
Symbol	Pin No.	Туре	Functions	Circuit configuration
XIN XOUT	1 24	X'tal OSC	Crystal resonator connection (4.5/7.2 MHz)	A02598
FMIN	15	Local oscillator signal input	Serial data input: FMIN is selected when DVS is set to 1. The input frequency range is from 10 to 160 MHz. The signal is passed through a built-in divide-by-two prescaler and then supplied to the swallow counter. Although the range of divisor settings is from 272 to 65,535, the actual divisor is twice the setting since there is also a built-in divide-by-two prescaler.	A02599
AMIN	14	Local oscillator signal input	Serial data input: AMIN is selected when DVS is set to 0. Serial data input: When SNS is set to 1: The input frequency range is from 2 to 40 MHz. The signal is supplied directly to the swallow counter. The range of divisor settings is from 272 to 65,535 and the actual divisor will be the value set. Serial data input: When SNS is set to 0: The input frequency range is from 0.5 to 10 MHz. The signal is supplied directly to a 12-bit programmable divider. The range of divisor settings is from 4 to 4,095 and the actual divisor will be the value set.	A02599
CE	3	Chip enable	Must be set high when serial data is input to the LC72130 (DI), or when serial data is output (DO).	A02600
CL	5	Clock	Used as the synchronization clock when serial data is input to the LC72130 (DI), or when serial data is output (DO).	□ S A02600
DI	4	Data input	Inputs serial data sent from the controller to the LC72130.	A02500
DO	6	Data output	Outputs serial data sent from the LC72130 to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	777 A02501
V _{DD}	16	Power supply	The LC72130 power supply (V _{DD} = 4.5 to 5.5 V) The power on reset circuit operates when power is first applied.	-

Continued on next page.

Continued from preceding page.


Symbol	Pin No.	Туре	Functions	Circuit configuration
V _{SS}	23	Ground	The LC72130 ground	-
BO1 BO2 BO3 BO4 BO5	7 8 9 10 2	Output port	Dedicated output pins The output states are determined by BO1 to BO5 in the serial data. Data: 0 = open, 1 = low These pins go to the open state after the power on reset. An 8 Hz time base signal can be output from BO1 when TBC in the serial data is set to 1. Note that the ON impedance of the BO1 pin is higher than that of the other pins (BO2 to BO5).	A02501
101 102	11 13	I/O port	 Pins used for both input and output The input or output state is determined by bits IOC1 and IOC2 in the serial data. Data: 0 = input port, 1 = output port When specified for use as an input port: The input state is transmitted to the controller through the DO pin. Input state: Low → data value = 0 High → data value = 1 When specified for use as an output port: The output state is determined by bits IO1 and IO2 in the serial data. Data: 0 = open, 1 = low These pins go to the input port state after the power ON reset. 	A02602
PD1 PD2	19 20	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level will be output from the PD pin. Similarly, when that frequency is lower, a low level will be output. The PD pin goes to the high impedance state when the frequencies agree.	EDGSOA
AIN1 AOUT1 AIN2 AOUT2	18 17 21 22	LPF amplifier transistor	The MOS transistor used for the PLL active low-pass filter.	A02604
IFIN	12	IF counter	The input frequency range is from 0.4 to 12 MHz. The signal is supplied directly to the IF counter. The result from the IF counter MSB is output through the DO pin. There are four measurement periods: 4, 8, 32, or 64 ms.	A02599

Serial Data I/O Methods


The LC72130 uses Sanyo's audio LSI serial bus format, the CCB (computer control bus) format, for data I/O. This LSI adopts an 8-bit address version of the CCB format.

	I/O mode Address								Function		
	I/O mode	B0	B1	B2	В3	A0	A1	A2	A3	Function	
1	IN1 (82)	0	0	0	1	0	1	0	0	This is a control data input (serial data input) mode. 24 bits of data are input. See the "DI Control Data (Serial Data Input)" item for a description of the contents of the input data.	
2	IN2 (92)	1	0	0	1	0	1	0	0	This is a control data input (serial data input) mode. 24 bits of data are input. See the "DI Control Data (Serial Data Input)" item for a description of the contents of the input data.	
3	OUT (A2)	0	1	0	1	0	1	0	0	This is a data output (serial data output) mode. The number of bits output is equal to the number of clock cycles. See the "DO Control Data (Serial Data Output)" item for a description of the content of the output data.	
			rmal hig	gh	B3 \	AO	A1	A2		First Data IN1/2 First Data OUT A02605	

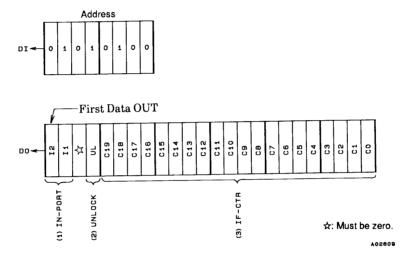
- 1. DI Control Data (Serial Data Input)
 - IN1 Mode

• IN2 Mode

2. DI Control Data Functions

No.	Control block/data	Functions Rela							
	Programmable divider data	• Sets the p	rogramma	able divide	r divisor.				
	P0 to P15					5. The po	osition of the LSB varies		
		depending	g on DVS	and SNS.	(*: don't care)				
		DVS	SNS	LSB	Divisor setti	• ,	Actual divisor		
		1	*	P0	272 to 655		Twice the value of the setting		
		0	1	P0	272 to 655		The value of the setting		
(1)		0 Note: B0	0 to P3 are	P4	4 to 40 hen P4 is the L9		The value of the setting		
(1)	DVS, SNS			•			able divider and switch the input		
	DV3, 3N3	frequency				nogramm	able divider and switch the input		
		DVS	SNS	Input		lı .	nput frequency range		
		1	*	FMI			10 to 160 MHz		
		0	1	AMI			2 to 40 MHz		
		0 Note: See	0 the "Pro	AMI	N e Divider" item f	or more in	0.5 to 10 MHz		
	Reference divider data	Selects th				or more ii	nomation.		
	R0 to R3							1	
		R3	R2	R1	R0	Re	ference frequency (kHz)		
		0	0 0	0	0 1		100 50		
		0	0	1	0		25		
		0	0	1 0	1 0		25 12.5		
		0	1 1	0	1 1		6.25		
		0	1	1	0				
		0	1	1	1		3.125		
		1 1	0 0	0	0 1		10 9		
(2)		1	0	1	0		5		
(2)		1	0	1	1		1		
		1 1	1 1	0	0 1		3 15		
		1	1	1	0	PLL I	NHIBIT + X'tal OSC STOP		
		1	1	1	1		PLL INHIBIT		
		Note: PLI	INHIBIT	ı	<u> </u>				
		AMIN	N, and IFIN	l pins are	set to the pull-d		r block are stopped, the FMIN, e (ground), and the charge pump		
			•	h impedar	ice state.				
	XS	 Crystal res XS = 0: 4. 		election					
		XS = 1: 7.							
					ected after the p	ower ON	reset.		
	IF counter control data CTE	• IF counter CTE = 1:			data				
	OIL	CTE = 1:							
	GT0, GT1	• Determine	es the IF c	ounter me	asurement peri	od.			
(3)		GT1	GT0	Mea	surement time ((ms)	Wait time (ms)	IFS	
(3)		0	0		4		3 to 4		
		0	1	1 8 3 to 4					
		1							
		1							
	1/0	Note: See the "IF Counter" item for more information.							
(4)	I/O port specification data IOC1, IOC2	Specifies the I/O direction for the bidirectional pins IO1 and IO2. Data: 0 = input mode, 1 = output mode							
	Output port data		•			to BO5,	IO1 and IO2 output ports		
(5)	BO1 to BO5, IO1, IO2	Data: 0 =				,		IOC1 IOC2	
		The data	= 0 (open)	state is se	elected after the	power O	N reset.	1002	

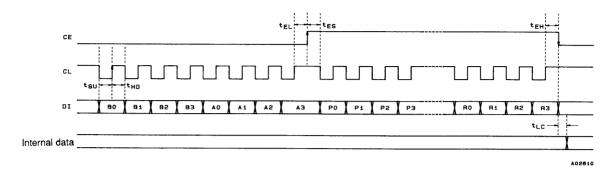
Continued from preceding page.

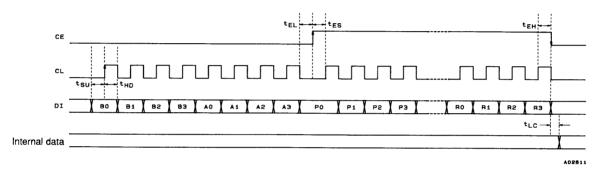

No.	Control block/data				Functions		Related data
	DO pin control data	Data that	determine				
	DOC0, DOC1, DOC2	DOC2	DOC1	DOC0		O pin state	
		0 0 0 Open 0 0 1 Low when the unlock state is detected 0 1 0 end-UC*1 0 1 1 Open					
		1 1 1 1	0 0 1 1	0 1 0 1	Open The IO1 pin state*2 The IO2 pin state*2 Open		
					er the power ON reset. F counter measurement	completion	ULO, UL1,
(6)		DO				_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CTE, IOC1, IOC2
			①	Counter s	tart	② Counter ③ CE: high complete	
		Caution: The high All with Cl					
	Unlock detection data UL0, UL1			. ,	detection width for checki e specified detection widt	ng PLL lock. h is seen as an unlocked state.	
		UL1	UL0		E detection width	Detector output	
(7)		0	0	Stopped		Open	DOC0, DOC1,
(1)		0	0	0		øE is output directly	DOC1,
		1	1	±0.55 µs		øE is extended by 1 to 2 ms øE is extended by 1 to 2 ms	
		Note: In t					
	Phase comparator	Controls t	he phase	comparate	or dead zone.		
	control data DZ0, DZ1	DZ1	DZ0		Dead zo	ne mode	
		0	0	DZA			
(8)		0	1	DZB			
`-'		1	0	DZC			
		1	1	DZD			
					B < DZC < DZD		
(9)	Clock time base TBC	from the E	801 pin. (I	BO1 data	is invalid in this mode.)	ne base signal to be output	BO1
	Charge pump control data DLC	• Forcibly c	ontrols the	e charge p	ump output.		
	. 520		LC D	Normal		imp output	
(10)			J 1	Forced le	operation		
		Note: If do	eadlock od illator stop	ccurs due oping, dea	to the VCO control voltage	e (Vtune) going to zero and the VCO forcing the charge pump output to	
		IOW	and Still	y viulle l	o ACC: (11119 is the dead)	ook oleaning offcult.)	

Continued from preceding page.

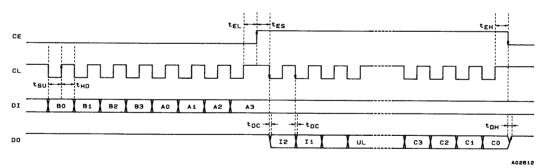
No.	Control block/data	Functions	Related data
(11)	IF counter control data	Note that if this value is set to zero the system enters input sensitivity degradation mode, and the sensitivity is reduced to 10 to 30 mV rms. * See the "IF Counter Operation" item for details.	
(12)	LSI test data TEST 0 to TEST2	LSI test data TEST0 TEST1 TEST2 These values must all be set to 0. TEST2 These test data are set to 0 automatically after the power ON reset.	

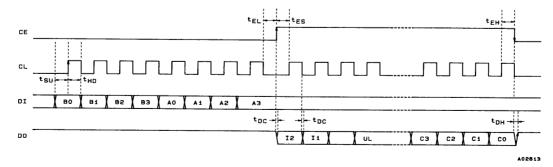
3. DO Output Data (Serial Data Output)


• OUT Mode

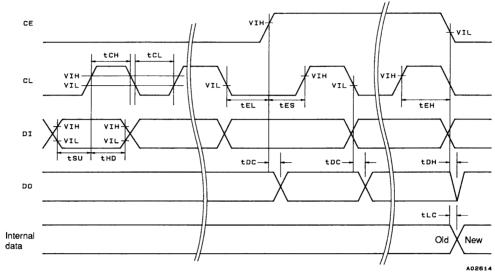

4. DO Output Data

No.	Control block/data	Functions	Related data
(1)	I/O port data I2, I1	Latched from the pin states of the TO1 and TO2 I/O ports. These values follow the pin states regardless of the input or output setting. Data is latched at the point where the circuit enters data output mode (OUT mode) I1 ← TO1 pin state	IOC1, IOC2
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL ← 0: Unlocked UL ← 1: Locked or detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	Latched from the value of the IF counter (20-bit binary counter). C19 ← MSB of the binary counter C0 ← LSB of the binary counter	CTE, GT0, GT1

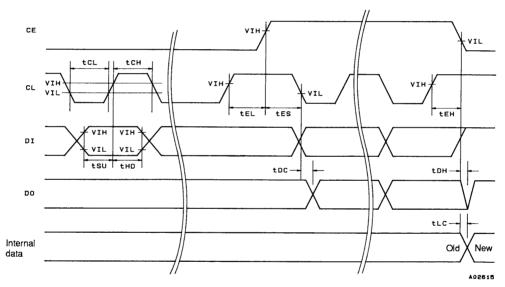

- 5. Serial Data Input (IN1/IN2) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, $t_{LC} \le 0.75~\mu s$
 - ① CL: Normal high


② CL: Normal low

- 6. Serial Data Output (OUT) $t_{SU},\,t_{HD},\,t_{EL},\,t_{ES},\,t_{EH} \geq 0.75~\mu s,~t_{DC},\,t_{DH} \leq 0.35~\mu s$
 - ① CL: Normal high

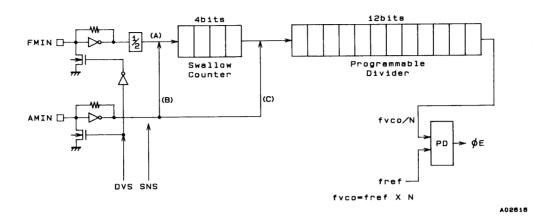


② CL: Normal low



Note: Since the DO pin is an n-channel open drain pin, the time for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

7. Serial Data Timing


When stopped with CL low

When stopped with CL high

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Data setup time	t _{SU}	DI, CL		0.75			μs
Data hold time	t _{HD}	DI, CL		0.75			μs
Clock low-level time	t _{CL}	CL		0.75			μs
Clock high-level time	t _{CH}	CL		0.75			μs
CE wait time	t _{EL}	CE, CL		0.75			μs
CE setup time	t _{ES}	CE, CL		0.75			μs
CE hold time	t _{EH}	CE, CL		0.75			μs
Data latch change time	t _{LC}					0.75	μs
Data sutput time	t _{DC}	DO, CL	Differs depending on the value of the pull-up resistor			0.25	
Data output time	t _{DH}	DO, CE	and the printed circuit board capacitance.			0.35	μs

Programmable Divider

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range (MHz)
Α	1	*	FMIN	272 to 65535	Twice the set value	10 to 160
В	0	1	AMIN	272 to 65535	The set value	2 to 40
С	0	0	AMIN	4 to 4095	The set value	0.5 to 10

Note: * Don't care.

- 1. Programmable Divider Calculation Examples
 - FM, 50 kHz steps (DVS = 1, SNS = *, FMIN selected)

$$FM RF = 90.0 MHz (IF = +10.7 MHz)$$

FM VCO = 100.7 MHz

PLL fref = 25 kHz (R0 to R1 = 1, R2 to R3 = 0)

100.7 MHz (FM VCO) \div 25 kHz (fref) \div 2 (FMIN: divide-by-two prescaler) = 2014 \rightarrow 07DE (HEX)

_		ξ	_		!	·				Z		_											
0	1	1	1	1	0	1	1	4	1	1	0	0	0	0	0	*	1		L	1	1	0	0
0	P1	P2	ь	P4	PS	94	Ь7	84	64	P 10	P11	P12	P13	P14	P15	SNS	DVS	CTE	х	P.O	B1	R2	нз

A0261

• SW, 5 kHz steps (DVS = 0, SNS = 1, AMIN high speed side selected)

SW RF =
$$21.75$$
 MHz (IF = $+450$ kHz)

SW VCO = 22.20 MHz

PLL fref =
$$5 \text{ kHz}$$
 (R0 = R2 = 0, R1 = R3 = 1)

22.2 MHz (SW VCO)
$$\div$$
 5 kHz (fref) = 4440 \rightarrow 1158 (HEX)

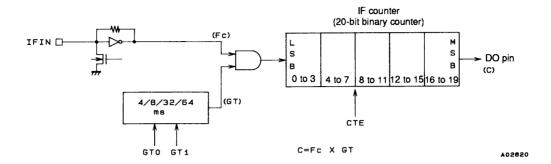
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
o d	14 14	S	ь	P.4	P	96	Р7	В4	PB	P10	P11	P12	P13	P14	P15	SNS	SAO	CTE	xs.	ВО	P.	R2	ВЗ

A0251

• MW, 10 kHz steps (DVS = 0, SNS = 0, AMIN low-speed side selected)

MW RF =
$$1000 \text{ kHz}$$
 (IF = $+450 \text{ kHz}$)

MW VCO = 1450 kHz

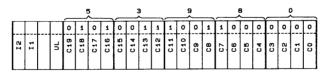

PLL fref =
$$10 \text{ kHz}$$
 (R0 to R2 = 0 , R3 = 1)

1450 kHz (MW VCO)
$$\div$$
 10 kHz (fref) = 145 \rightarrow 091 (HEX)

					_:	<u> </u>	_	_	ئ	₹		_											
*	*	*	*	1	0	0	0	1	0	0	1	0	0	0	0	0	0			0	0	0	1
ЬО	P1	P2	ьз	P.4	P5	P6	Ь7	8 d	64	P10	P11	P12	P13	P14	P15	SNS	SVO	CTE	ХS	ВО	H1	A2	нз

IF Counter

The LC72130 IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.

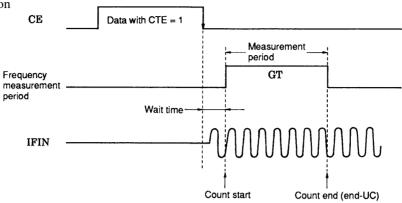


GT1	GT0	Measurement time									
GII	Gio	Measurement period (GT) (ms)	Wait time (twu) (ms)								
0	0	4	3 to 4								
0	1	8	3 to 4								
1	0	32	7 to 8								
1	1	64	7 to 8								

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.

$$Fc = \frac{C}{GT}$$
 (C = Fc × GT) C: Count value (number of pulses)

- 1. IF Counter Frequency Calculation Examples
 - When the measurement period (GT) is 32 ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = $342400 \div 32$ ms = 10.7 MHz


A0262

• When the measurement period (GT) is 8 ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = $3600 \div 8 \text{ ms} = 450 \text{ kHz}$

405ess

2. IF Counter Operation

A02623

Prior to starting the IF counter, reset the IF counter in advance by setting CTE in the serial data to zero.

The IF counter is started by changing the value of CTE in the serial data from zero to one. The serial data is latched when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must check for the presence of the IF-IC SD (station detect signal) and, must turn on the IF buffer output and operate the counter only if the SD signal is present. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN minimum input sensitivity standard

f (MHz)

			· · · · · · · · · · · · · · · · · · ·					
IFS	0.4 ≤ f < 0.5	$0.4 \le f < 0.5$ $0.5 \le f < 8$						
1: Normal mode	40 mVrms (0.1 to 3 mVrms)	40 mVrms	40 mVrms (1 to 10 mVrms)					
0: Degradation mode	70 mVrms (10 to 15 mVrms)	70 mVrms	70 mVrms (30 to 40 mVrms)					

(): Actual values (reference data)

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, this determination must be performed over a period no less than the reference frequency period. However, directly following a change to the (frequency) divisor N, that determination must be performed after at least two reference frequency periods have passed.

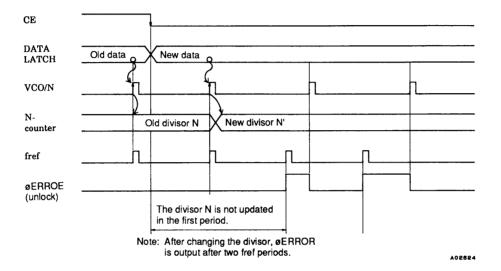
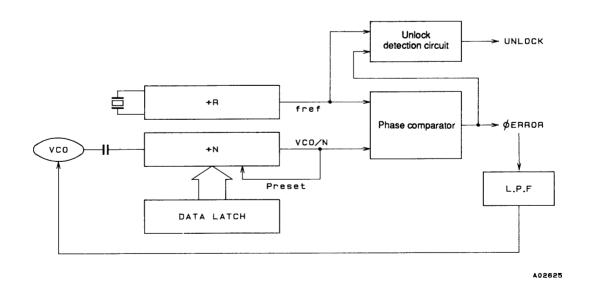
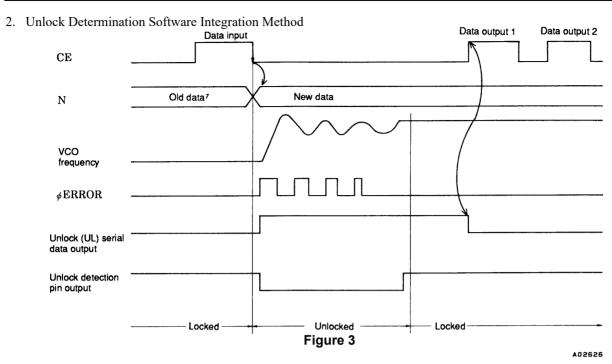
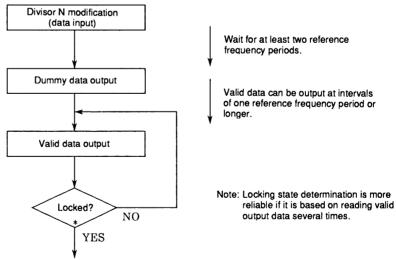


Figure 1 Unlocked State Detection Timing

For example, if fref is 1 kHz, i.e., the period is 1 ms, after the divisor N is changed, unlocked state determination must be performed after waiting 2 ms.

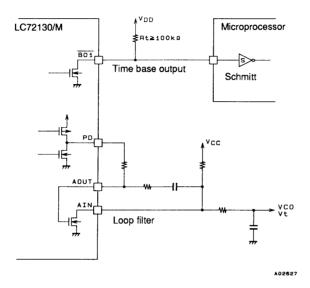

Figure 2 Circuit Structure

3. Unlocked State Data Output Using Serial Data Output

In the LC72130, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output 1 point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output 1, which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output 2) and following outputs are valid data.

Locked State Determination Flowchart


4. Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)

Since the locking state (high = locked, low = unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin $(\overline{BO1})$ should be at least 100 k Ω . Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter.

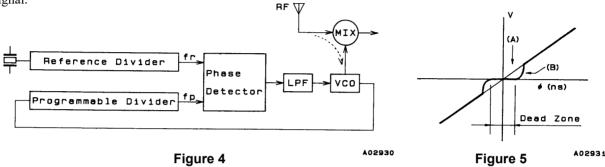
Other Items

1. Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	−-0 s
0	1	DZB	ON/ON	−0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	+ +0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.


- Side band generation due to reference frequency leakage
- Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/R ratio in excess of 90 to 100 dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

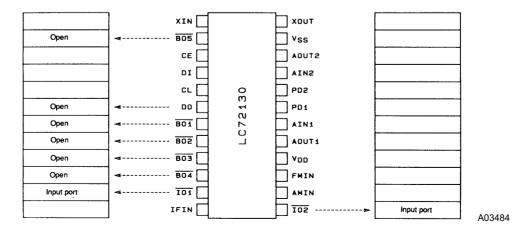
The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularly-priced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

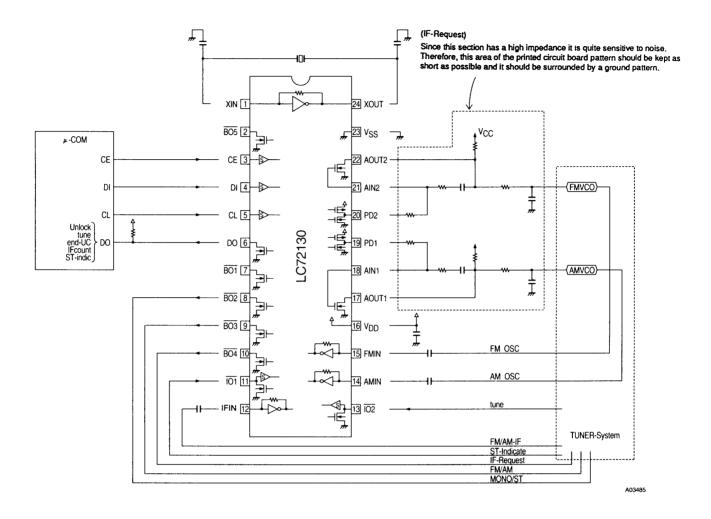
2. Notes on the FMIN, AMIN, and IFIN Pins

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

3. Notes on IF Counting → SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.


4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.


5. Power Supply Pins

A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the V_{DD} and V_{SS} pins.

Pin States After the Power ON Reset

Sample Application System

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provide information as of November, 1996. Specifications and information herein are subject to change without notice.